

Published on Web 05/12/2009

A Tubular Biocontainer: Metal Ion-Induced 1D Assembly of a Molecularly Engineered Chaperonin

Shuvendu Biswas,[†] Kazushi Kinbara,^{*,†} Nobuhiro Oya,[†] Noriyuki Ishii,[‡] Hideki Taguchi,[§] and Takuzo Aida^{*,†}

Department of Chemistry and Biotechnology, School of Engineering and Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan, and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan

Received April 3, 2009; E-mail: kinbara@tagen.tohoku.ac.jp; aida@macro.t.u-tokyo.ac.jp

Cylindrical nanocarriers sometimes exhibit better pharmacokinetics and efficiency in drug delivery than spherical ones. A recent example highlighted the excellent ability of long filamentous polymeric micelles to deliver paclitaxel into tumor cells.¹ Here we report a novel proteinbased soft "nanotube" formed by supramolecular polymerization of chaperonin GroEL, a barrel-shaped tetradecameric protein assembly with an inner diameter of 4.5 nm.² In biological systems, GroEL utilizes its ATP-induced mechanical motion to assist refolding of denatured proteins. GroEL used for the present study (GroEL_{SP/MC}) was sitespecifically modified in the entrance parts of its cavity with a number of photochromic [spiropyran (SP)/merocyanine (MC)] units (Figure 1a), allowing the switching of certain functions of GroEL by ATP

Figure 1. (a) Preparation of GroEL_{SP/MC} by modification of mutant GroEL_{Cys} with 1'-(maleimidoethyl)spirobenzopyran. (b) Schematic illustrations of Mg²⁺-induced 1D assembly of GroEL_{SP/MC} (left) without and (right) with guest.

and light.³ In the course of this study, we noticed that GroEL_{SP/MC} sometimes displays a higher molecular-mass fraction in size-exclusion chromatography (SEC) and later confirmed that this fraction is caused by one-dimensional (1D) assembly of GroEL_{SP/MC} triggered by divalent metal ions. In this communication, we also highlight that this cylindrical

hollow assembly can serve as a novel biocontainer for proteins (Figure 1b).

To obtain GroEL_{SP/MC}, we prepared mutant GroEL (GroEL_{Cys}: C \rightarrow A; K³¹¹ \rightarrow C, L³¹⁴ \rightarrow C) bearing 14 Cys residues in each entrance part of the cavity. Next, the Cys residues were allowed to react with spirobenzopyran-appended maleimide (SPMI) in 25 mM tris-HCl buffer (pH 7.4). During incubation for 12 h at 4 °C, the colorless mixture gradually turned light-purple because of partial isomerization of SP to MC, a known spontaneous process occurring in buffers.^{4,5} The reaction mixture was subjected to rapid gel filtration with a Sephadex G-25 column (50 mM tris-HCl buffer) to remove unreacted SPMI. The filtrate, containing a protein fraction, was analyzed by Ellman's test. In comparison with GroEL_{Cys}, the filtrate showed hardly any residual SH, indicating nearly complete conversion of GroEL_{Cys} into GroEL_{SP/MC}.⁵

When a 0.6 μ M tris-HCl buffer solution of GroEL_{SP/MC} was subjected to SEC using a 100 mM tris-HCl buffer (50 mM, pH 7.4) solution of KCl as an eluent, a small shoulder at a shorter retention time was observed along with a major peak due to GroEL_{SP/MC} (red, Figure 2a). To our surprise, addition of MgCl₂ to the above solution

Figure 2. (a) SEC traces (absorption at 280 nm) of 0.6 μ M GroEL_{SP/MC} without (red, dashed) and with (blue, solid) 5 mM MgCl₂ before mixing with 25 mM EDTA and after EDTA treatment (violet, dotted). (b) DLS profiles of GroEL_{SP/MC} without (red, dashed) and with 5 mM MgCl₂ (blue, solid) before EDTA treatment.

gave rise to a significant change in the SEC. For example, when GroEL_{SP/MC} was immersed for 0.5 h in MgCl₂ solution (5 mM) at 37 °C, a broad elution curve (blue) with a peak top elution volume of 2.5 mL emerged at the expense of the peak due to GroEL_{SP/MC} (elution volume 3.2 mL). Dynamic light scattering (DLS) analysis (Figure 2b) of the resulting mixture indicated the presence of ~7 μ m-sized particles. As observed by TEM (Figure 3a), the mixture contained very long cylindrical nanofibers with a uniform diameter of 15 nm. The typical pattern of lateral stripes in Figure 3b and the reported dimensional features of GroEL² indicate that the cylinders were composed of a large number of GroEL_{SP/MC} units connected via their

[†] School of Engineering, the University of Tokyo.

^{*} National Institute of Advanced Industrial Science and Technology.

[§] Graduate School of Frontier Sciences, the University of Tokyo.

Figure 3. TEM micrographs of one-dimensionally assembled GroEL_{SP/MC} after mixing with 5 mM MgCl₂ (a, b) before and (c) after mixing with 25 mM EDTA.

entrance parts.⁶ Notably, the longest nanotube was $\sim 2.5 \ \mu m \log_2$ corresponding to a 170-mer of GroEL_{SP/MC} (MW $\approx 1.4 \times 10^8$).⁵ In sharp contrast, GroEL_{Cys} did not polymerize upon mixing with MgCl₂ but remained unassembled,⁵ suggesting that the photochromic units in GroEL_{SP/MC} play a critical role in its 1D assembly.

Not only Mg²⁺ but also other divalent metal ions such as Ca²⁺, Mn²⁺, Co²⁺, and Zn²⁺ triggered 1D assembly of GroEL_{SP/MC},⁵ while monovalent cations such as Na⁺, K⁺, and Cs⁺ hardly induced the assembly. Trivalent cations such as Fe³⁺, In³⁺, Ce³⁺, and Eu³⁺ caused the assembly of GroEL_{SP/MC} but gave only ill-defined aggregates.⁵ Divalent metal ions are known to coordinate with MC, affording their 1:2 complexes under certain conditions.⁷ Hence, they possibly coordinate with MC in GroEL_{SP/MC}. In fact, when MgCl₂ was added at 37 °C to a tris-HCl buffer solution of GroEL_{SP/MC}, the emission from MC at 629 nm ($\lambda_{ext} = 562$ nm) immediately showed a 7 nm blue shift.⁵ Furthermore, when EDTA, a strong metal ion chelator, was added to the preassembled system at 37 °C, the long cylinders were cut into short-chain oligomers and eventually into monomeric GroEL_{SP/MC} [Figures 2a (violet) and 3c]. Since GroEL_{SP/MC} possesses multiple MC units, such metal coordination can take place in a "multivalent" manner to ensure the 1D assembly. In relation to this important issue, we investigated the Mg2+-induced assembly of GroEL_{SP/MC} under illumination with visible light (>400 nm).⁵ As already described, SP spontaneously isomerizes to form an SP/MC mixture in tris-HCl buffer.4,5 However, upon continuous visible-light irradiation, the reverse isomerization can be induced concomitantly, reducing the content of MC in GroEL_{SP/MC}. In agreement with our expectation, the 1D assembly of GroEL_{SP/MC}, as observed by SEC, was less pronounced than in the absence of illumination.⁵ Finally, we point out that the assembly is highly temperature-dependent. When the mixture of GroEL_{SP/MC} and MgCl₂ was maintained at a low temperature (e.g., 4 °C), the assembly of GroEL_{SP/MC}, as observed by SEC, proceeded very sluggishly.⁵ However, heating the mixture to 37 °C clearly accelerated the assembling event.⁵ We assume that the 1D assembly of GroEL_{SP/MC} may be completed by dehydration, as generally observed for protein assembly: metal ligation of the MC units certainly allows a primary assembly of GroEL_{SP/MC} that is is still dynamic but can be greatly stabilized when thermal dehydration of the protein facets follows.

Similar to GroEL, GroEL_{SP/MC} can bind denatured proteins, even under the 1D assembly conditions containing Mg²⁺. We added an aqueous solution of denatured α -lactalbumin, fluorescently labeled with lucifer-yellow (α -Lac_{FL/denat}; 0.6 μ M),⁵ to a 0.6 μ M tris-HCl buffer solution of GroEL_{SP/MC}. After incubation for 15 min at 4 °C, 5 mM MgCl₂ was added, and the mixture was immersed at 37 °C. When monitored by absorption at 280 nm, the ternary mixture provided a broad SEC profile (Figure 4a, blue curve) typical of 1D-assembled

Figure 4. SEC traces of GroEL_{SP/MC} (a) after mixing with α -Lac_{FL/denat} followed by MgCl₂ and (b) after mixing with MgCl₂ followed by α -Lac_{FL} denat. Blue solid curves were obtained by monitoring the absorption at 280 nm and green dashed curves by monitoring the emission at 531 nm (λ_{ex} = 426 nm).

GroEL_{SP/MC}. A virtually identical chromatogram resulted when the SEC was followed by emission at 531 nm due to lucifer-yellow ($\lambda_{ex} = 426$ nm) (green curve), showing that Mg2+ allows GroELSP/MC to undergo 1D assembly without losing the α -Lac_{FL/denat} guest. In sharp contrast, when α -Lac_{FL/denat} was added to the system after mixing with MgCl₂, the resulting assembly in SEC showed hardly any fluorescence response (Figure 4b). For such a remarkably low dynamic nature of the 1D hollow assembly of GroEL_{SP/MC}, we assume that both multivalent metal coordination and hydrophobic interactions between the dehydrated protein facets must be responsible.

In conclusion, through a serendipitous observation, we found a molecular design strategy to allow 1D assembly of a group I chaperonin protein into micrometer-long hollow cylinders with a remarkably high mechanical stability.⁸ As demonstrated by trapping of α -Lac_{FL/denat}, these cylinders could take advantage of unique biological functions of molecular chaperons and may serve as a novel biocontainer for delivering a variety of guest molecules, including proteins.

Acknowledgment. This work was partially supported by the MEXT, Grant-in-Aid for Scientific Research on Innovative Areas "Emergence in Chemistry" (20111010). We acknowledge Mr. Tatsuya Niwa (University of Tokyo) for his active collaboration.

Supporting Information Available: Details of experimental procedures, including preparation of GroEL_{Cvs} and GroEL_{SP/MC}, and Figures S1-S14. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Geng, Y.; Dalhimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, E. D. Nat. Biotechnol. 2007, 2, 249. (b) Nishiyama, N. Nat. Biotechnol. 2007 2 203
- (2) Xu, Z.; Horwich, A. L.; Sigler, P. B. *Nature* 1997, *388*, 741.
 (3) (a) Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Nature 2003, 423, 628. (b) Muramatsu, S.; Kinbara, K.; Taguchi, H.; Ishii, N.; Aida, T. J. Am. Chem. Soc. 2006, 128, 3764.
- Hirakura, T.; Nomura, Y.; Aoyama, Y.; Akiyoshi, K. Biomacromolecules 2004, 5, 1804.
- (5) See the Supporting Information.
- (6) For filamentous assembly of group II chaperonins, see: (a) Trent, J. D.; Kagawa, H. K.; Yaoi, T.; Olle, E.; Zaluzec, N. J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 5383. (b) Paavola, C. D.; Kagawa, H.; Chan, S. L.; Trent, J. D. Nanotechnology 2007, 18, 455101.
- (7) (a) Filley, J.; Ibrahim, M. A.; Nimlos, M. R.; Watt, A. S.; Daniel, M. B. J. Photochem. Photobiol., A 1998, 117, 193-198. (b) Machitani, K.; Nakamura, M.; Sakamoto, H.; Ohata, N.; Masuda, H.; Kimura, K. J. Photochem. Photobiol., A 2008, 200, 96
- For examples of bioinspired pores, see: (a) Das, G.; Talukdar, P.; Matile, S. Science 2002, 298, 1600. (b) Sakai, N.; Mareda, J.; Matile, S. Acc. Chem. Res. 2008, 41, 1354.

JA902696Q